3.2 The Hydrostatic Equation

Air pressure at any height in the atmosphere is due
to the force per unit area exerted by the weight of all
of the air lying above that height. Consequently,
atmospheric pressure decreases with increasing
height above the ground (in the same way that the
pressure at any level in a stack of foam mattresses
depends on how many mattresses lie above that
level). The net upward force acting on a thin horizon-
tal slab of air, due to the decrease in atmospheric
pressure with height, is generally very closely in bal-
ance with the downward force due to gravitational
attraction that acts on the slab. If the net upward
force on the slab is equal to the downward force on
the slab, the atmosphere is said to be in hydrostatic
balance. We will now derive an important equation
for the atmosphere in hydrostatic balance.

Consider a vertical column of air with unit hori-
sontal cross-sectional area (Fig. 3.1). The mass of air
between heights z and z + 8z in the column is péz,
where p is the density of the air at height z. The
downward force acting on this slab of air due to the
weight of the air is gpdz, where g is the acceleration
due to gravity at height z. Now let us consider the net
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Balance of vertical forces in an atmosphere in

in hydrostatic balance). Small blue arrows indicate the down-
ward force exerted on the air in the shaded slab due to the
pressure of the air above the slab; longer blue arrows indicate
the upward force exerted on the shaded slab due to the pres-
sure of the air below the slab. Because the slab has a unit
cross-sectional area, these two pressures have the same
numerical values as forces. The net upward force due to these
pressures (—8p) is indicated by the upward-pointing thick
black arrow. Because the incremental pressure change &p is a
negative quantity, —dp is positive. The downward-pointing
thick black arrow is the force acting on the shaded slab due
to the mass of the air in this slab.

vertical force that acts on the slab of air between z
and z + 6z due to the pressure of the surrounding
air. Let the change in pressure in going from height z
to height z + 6z be &p, as indicated in Fig. 3.1.
Because we know that pressure decreases with
height, dp must be a negative quantity, and the
upward pressure on the lower face of the shaded
block must be slightly greater than the downward
pressure on the upper face of the block. Therefore,
the net vertical force on the block due to the vertical
gradient of pressure is upward and given by the posi-
tive quantity —&p, as indicated in Fig. 3.1. For an
atmosphere in hydrostatic balance, the balance of
forces in the vertical requires that

—0p = gpdz

or, in the limit as §z — 0,
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Equation (3.17) is the hydrostatic equation.!* It
should be noted that the negative sign in (3.17)
ensures that the pressure decreases with increasing
height. Because p = 1/a (3.17) can be rearranged to
give
gdz = —adp (3.18)
If the pressure at height z is p(z), we have, from
(3.17), above a fixed point on the Earth
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or, because p(«) = 0,

p(z) = f “godz (3.19)

That is, the pressure at height z is equal to the weight
of the air in the vertical column of unit cross-
sectional area lying above that level. If the mass of
the Earth’s atmosphere were distributed uniformly
over the globe, retaining the Earth’s topography
in its present form, the pressure at sea level would
be 1.013 X 10° Pa, or 1013 hPa, which is referred to
as I atmosphere (or 1 atm).

3.2.1 Geopotential

The geopotential ® at any point in the Earth’s
atmosphere is defined as the work that must be
done against the Earth’s gravitational field to raise
a mass of 1 kg from sea level to that point. In other
words, @ is the gravitational potential per unit
mass. The units of geopotential are J kg~! or m? s=2.
The force (in newtons) acting on 1 kg at height z
above sea level is numerically equal to g. The work
(in joules) in raising 1 kg from z to z + dz is gdz;
therefore

dd = gdz

or, using (3.18),

d® = gdz = —adp (3.20)

14 In accordance with Eq. (1.3), the left-hand side of (3.17) is written in partial differential notation, i.e., 9p/0z, because the variation of
pressure with height is taken with other independent variables held constant.



The geopotential ®(z) at height z is thus given by

D(z) = J:gdz (3.21)

where the geopotential ®(0) at sea level (z = 0) has, by
convention, been taken as zero. The geopotential at a
particular point in the atmosphere depends only on the
height of that point and not on the path through which
the unit mass is taken in reaching that point. The work
done in taking a mass of 1 kg from point A with geopo-
tential @ 4 to point B with geopotential ®p is®p — Dy.

We can also define a quantity called the geopoten-
tial height Z as

d(z) 1

Z=—E = = | gdz (3.22)
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where g is the globally averaged acceleration due to
gravity at the Earth’s surface (taken as 9.81 m s72).
Geopotential height is used as the vertical coordinate
in most atmospheric applications in which energy
plays an important role (e.g., in large-scale atmos-
pheric motions). It can be seen from Table 3.1 that
the values of z and Z are almost the same in the
lower atmosphere where gp = g.

In meteorological practice it is not convenient to
deal with the density of a gas, p, the value of which is
generally not measured. By making use of (3.2) or
(3.15) to eliminate pin (3.17), we obtain
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Rearranging the last expression and using (3.20)
yields

d d
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Table 3.1 Values of geopotential-height () and acceleration
due to gravity (g) at 40° latitude for geometric height ()

z (km) Z (km) g(ms™2)
0 0 ) 9.81
1 1.00 9.80
10 9.99 9.77
100 98.47 9.50

500 463.6 8.43




If we now integrate between pressure levels p; and
p», with geopotentials ®; and ®,, respectively,
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Dividing both sides of the last equation by gy and

reversing the limits of integration yields
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This difference Z, — Z; is referred to as the (geopo-
tential) thickness of the layer between pressure levels

p1 and ps.



The temperature of the atmosphere generally
varies with height and the virtual temeprature
correction cannot always be neglected. In this more
general case (3.24) may be integrated if we define
a mean virtual temperature T, with respect to p as
shown in Fig. 3.2. That is,
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Then, from (3.24) and (3.28),
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Equation (3.29) is called the hypsometric equation.
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Fig. 3.2 Vertical profile, or sounding, of virtual temperature.
If area ABC = area CDE, T, is the mean virtual temperature
with respect to In p between the pressure levels p; and p,.



3.2.3 Thickness and Heights of Constant
Pressure Surfaces

Because pressure decreases monotonically with
height, pressure surfaces (i.e., imaginary surfaces on
which pressure is constant) never intersect. It can be
seen from (3.29) that the thickness of the layer
between any two pressure surfaces p, and p; is pro-
portional to the mean virtual temperature of the
layer, 7}. We can visualize that as T, increases, the air
between the two pressure levels expands and the
layer becomes thicker.

Exercise 3.4 Calculate the thickness of the layer
between the 1000- and 500-hPa pressure surfaces
(a) at a point in the tropics where the mean virtual
temperature of the layer is 15 °C and (b) at a point
in the polar regions where the corresponding mean
virtual temperature is —40 °C.

Solution: From (3.29)

RyT, 1 (1000
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AZ = Zsoowpa — Z1000 hPa = .

Therefore, for the tropics with T, = 288K, AZ =
5846m. For polar regions with T, = 233K, AZ =
4730 m. In operational practice, thickness is rounded to
the nearest 10 m and is expressed in decameters (dam).
Hence, answers for this exercise would normally be
. expressed as 585 and 473 dam, respectively. E



