Numerical Solution of Initial-Value Problems

An nth-order differential equation is accompanied by n auxiliary conditions,
which are needed to determine the n constants of integration that arise in
the solution process. When these conditions are provided at the same value
of the independent variable, we speak of an initial-value problem (IVP). In
other situations, the supplementary conditions are specified at different val-
ues of the independent variable. And since these values are usually stated
at the extremities of the system, these types of problems are referred to as
boundary-value problems (BVPs).

In this chapter, we will discuss various methods to numerically solve IVPs.
Stability and stiffness of differential equations will also be covered. Treatment
of BVPs is presented in Chapter 8. Numerical methods for a single, first-
order IVP will be studied first; Figure 7.1. Some of these methods will then be
extended and used to solve higher-order and systems of differential equations.

A single, first-order IVP is represented as

Y =fxy), yx)=y, a=Xx<xsx,=b (7.1)
where y, is the specified initial condition, the independent variable x assumes
values in [a, b], and it is assumed that a unique solution y(x) exists in the

interval [a, b]. The interval is divided into n segments of equal width # so that

x1=xg+h, xo=x0+2h,..., X,=2xp+nh

The solution at the point x, is available from the initial condition. The objec-
tive is to find estimates of the solution at the subsequent points x;, x,, ..., X,.

7.1 One-Step Methods

One-step methods find the solution estimate y,,; at the location x,,; by extrap-
olating from the solution estimate y; at the previous location x;. Exactly, how
this new estimate is extrapolated from the previous estimate depends on the
numerical method used. Figure 7.2 describes a very simple one-step method,
where the slope @is used to extrapolate from y; to the new estimate v,

Y=y +hp (i=0,1,2,..,n-1) 72)

Euler’s method
One-step methods Higher-order Taylor methods

Runge—Kutta methods
Initial-value problem

¥ =f(xy). ylxg) =, Adams—Bashforth method
Multi-step methods < Adams—Moulton method

Predictor—corrector method

FIGURE 7.1
Classification of methods to solve an initial-value problem.

A7 Y=Y + ho

g

Slope = ¢ 7

i“

True solution

trajectory h i

¥i

&
®
v

i+1

FIGURE 7.2
A simple one-step method.

Starting with the prescribed initial condition y,, Equation 7.2 is applied in
every subinterval [x;, x,,] to find solution estimates at x,, x,, ..., x,. The gen-
eral form in Equation 7.2 describes all one-step methods, with each method
using a specific approach to estimate the slope ¢. The simplest of all one-step
methods is Euler’s method, explained below.

7.2 Euler’s Method
The expansion of y(x,) in a Taylor series about x, yields

1

E kan(xU) -~

Y(x1) = y(xo +) = y(xo) + hy'(xo) +

Retaining the linear terms only, the above is rewritten as
y(x1) = y(xg) + hy'(x0) + %hzy" (o)
for some &, between x; and x,. In general, expanding y(x;,,) about x; yields
(i) = Y+ iy Gx) + 5y ()

for some & between x; and x;,. Note that y'(x) =f(x, ¥) by Equation 7.1.
Introducing notations y; = y(x,) and y;,; = ¥(x,,,), the estimated solution ¥, can
be found via

il = Vi + hf(x,-,y,-), 1= 0,]., 2,..., n—-1 (73)

known as Euler’s method. Comparing with the description of the general
one-step method, Equation 7.2, we see that the slope ¢ at x; is simply esti-
mated by f(x; y;), which is the first derivative at x;, namely, y(x). Equation 7.3
is called the difference equation for Euler’s method.

The user-defined function EulerODE uses Euler’s method to estimate the
solution of an IVP.

function y=EulerODE(f,x,y0)

%

% EulerODE uses Euler's method to solve a first-order

% ODE given in the form y'=f(x,y) subject to initial

% condition yO0.

%

% y=EulerODE(f,x,y0) where

%

% f is an inline function representing f (x,y),

% x is a vector representing the mesh points,

% y0 is a scalar representing the initial wvalue of vy,
%

% y is the vector of solution estimates at the mesh
% points.

y=0%x; % Pre-allocate

y(1)=y0; h=x(2)-x(1);
for n=1:length(x)-1,

yi{n+l) =y(n)+h*£ (x(n) ,y(n));
end

Example 7.1: Euler’s Method
Consider the IVP

y+y=2x, y0)=1 0=sx<1

The exact solution is derived as ¥,,,(¥) = 2x + 3¢ — 2, We will solve the
IVP numerically using Euler’s method with step size = 0.1. Comparing
with Equation 7.1, we find flx,y) =—y +2x. Starting with y,=1, we use
Equation 7.3 to find the estimate at the next point, x = 0.1, as

1 = Yo + Bf(x0,30) = 1+0.1£(0,1) = 1+ 0.1(-1) = 0.9
The exact solution at x=0.1 is calculated as

Yernr (0.1) = 2(0.1) + 3¢9} — 2 = 0.914512

Therefore, the relative error is 1.59%. Similar computations may be per-
formed at the subsequent points 0.2, 0.3, ..., 1. The following MATLAB®
script file uses the user-defined function EulerODE to find the numerical
solution of the IVP and returns the results, including the exact values, in
tabulated form. Figure 7.3 shows that Euler estimates capture the trend
of the actual solution.

disp(' X yEuler yExact')
h=0.1; x=0:h:1; y0=1;
f=inline('—y+2*x','x','y');

yvEuler = EulerQDE (£, x,y0) ;

L1 ; ;
1.05 1]
1 True solution .
trajectory :
095 + . 1
E o9t : !
- :
085 - E:uler’s ° g
estimate © X ;
0.8 + . . & : o -
: i : =] ° : : : :
075 ; '_ ; : : : : ; :]
0.7 1 L I !] ! ’ i 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X
FIGURE 7.3

Comparison of Euler’s and exact solutions in Example 7.1.

yExact = inline (' 2*x+3%*exp(—x)-2");

for k=1:length(x),
x_coord =x (k) ;
yE = yEuler (k) ;
vEx = yExact (x (k)) ;

fprintf£('%6.2£F %11.6f %11.6f\n',x coord,yE, yEx)

end
b4 yEuler yExact
0.00 1.000000 1.000000
0.10 0.900000 0.914512
0.20 0.830000 0.B856192
0.30 0.787000 0.B22455
0.40 0.768300 0.810960
0.50 0.771470 0.818592
0.60 0.794323 0.846435
0.70 0.834891 0.B889756
0.80 0.891402 0.947987
0.%0 0.962261 1.019709
1.00 1.046035 1.103638

The largest relative error is roughly 6.17% and occurs at x=0.7. Using
a smaller step size h will reduce the errors. Executing the above script file
with h = 0.05, for example, shows a maximum relative error of 3.01% at
x=0.65.

7.2.1 Error Analysis for Euler’s Method

Two sources of error are involved in the numerical solution of ordinary dif-
ferential equations: round-off and truncation. Round-off errors are caused
by the number of significant digits retained and used for calculations by
the computer. Truncation errors are caused by the way a numerical method
approximates the solution, and comprise two parts. The first part is a local
truncation error resulting from the application of the numerical method in
each step. The second part is a propagated truncation error caused by the
approximations made in the previous steps. Adding the local and propagated
truncation errors yields the global truncatien error. It can be shown that the
local truncation error is O(h?), while the global truncation error is O(h).

7.2.2 Calculation of Local and Global Truncation Errors

The global truncation error at the point x;, is simply the difference between
the actual solution yf,; and the computed solution y;,,. This contains the
local truncation error, as well as the effects of all the errors accumulated in
the steps prior to the current location x;,;:

Global truncation error at x;,; = |y§‘+1 - yi + hf (x,-,yf)‘
Actual Euler's estimate at xi4+ (7'4)
solution using computed solution at x;

at 41

The local truncation error at x;, is the difference between the actual
solution y;,; and the solution that would have been computed had the actual
solution been used by Euler’s method going from x; to x,,,

Local truncation error at x;,; = |y |= |yi + hf (x;,y;’)|
Actual Euler's estimate at xi.1 (75)
solution using actual solution at x;
at xi41

Example 7.2: Local and Global Truncation Errors

In Example 7.1, calculate the local and global truncation errors at each
point and tabulate the results.

SOLUTION

Starting with the initial condition y, =1, the Euler’s computed value at
x,=0.11s yi = 0.9 while the actual value is y{ = 0.914512. At this stage,
the global and local truncation errors are the same because Euler's
method used the initial condition, which is exact, to find the estimate. At
x, = 0.2, the computed value is y5 = 0.83, which was calculated by Euler’s
method using the estimated value yi = 0.9 from the previous step. If
instead of y{ we use the actual value y{ = 0.914512, the computed value
at x, is

72 = Yt + hf(x,y?) = 0.914512 + 0.1£(0.1,0.914512) = 0.843061
Therefore
Local truncation error at x; = y3 — ij»
= 0.856192 - 0.843061 = 0.013131
The global truncation error at x, is simply calculated as
Global truncation error at X, = y3 — y3

= 0.856192 - 0.830000 = 0.026192

It is common to express these errors in the form of percent relative
errors; hence, at each point we evaluate

(Local or global) Truncation error

x 100
Actual value

With this, the (local) percent relative error at x, is

Y3 — 1 100 = 0.013131

—

= =222 100 = 1.53
ys 0.856192

The {global) percent relative error at x, is

x 100 = —— % 100 = 3.06

The following MATLAB script file uses this approach to find the per-
cent relative errors at all x;, and completes the table presented earlier in
Example 71.

digp(’ x yEuler yExact e local e glokal'}
h=0.1; x=0:h:1; ye=1; f=inline{ '—y+2*%x','x",'¥'};
yEuler =EulerODE{f,x,y0); yExact =inline{'Z2*xti*expl(-x)=2');

vtilda=0%x; ytilda(l) =v0;
for m=1:lengthi{x]-1,

vtilda{ntl) = yExact (x(n)) + h*f (x{n), yExact (x{n) 1} ;
end

for k=1:1lengthix},
x _coord=x(k);
vE=yBuler (k) ;
yEx=yExact (x(kl};
&_local = {yEx-ytilda(k}}/yEx*100;
e_global = (yEx-yE} /yEx*100;

fprintf ('%6.2f $11.6f %11.6f %6.2f
$6.2f\n',x_coord,yE,vEx,e_local,e _global)

end

X yEuler vExact e local e global

Q.00 1.000G00 1.0a0000 0.0D0 0.00

0.190 0.500000 0.914512 1.5% 1.59

0.20 G.830000 0.85601%22 1.53 3.06 Calculated by
hand earlier

0.30 0.787000 0.822455 1.44 4.31

0.40 0.7688300 0.81l09&0 1.33 .26

0.50 Q.7F71470 0.B13552 1.19 5.87

0.60 0.7594323 0.846435 1.04 6.16

0.70 0.834g51 0.8BBS755 0.%90 65.17

Q.80 0.851402 0.947987 .76 5.9%

0.90 0.962261 1.019709 0.64 5.63

1.00 1.046035 1.103638 0.53 o.22

7.2.3 Higher-Order Taylor Methods

Euler’s method was developed by retaining only the linear terms in a Taylor
series. Retaining more terms in the series is the premise of higher-order
Taylor methods. Expanding y(x,) in a Taylor series about x; yields

o 1 ”] 1 1 +
Y(n) = YO+ hy () + Y () + o+ Y OE) + o G

where & is between x; and x;,,. The kth-order Taylor method is defined as

y:’+1 = I + hpk(x,-,y,-), i= U,]., 2, R 1 (7‘6}

whete
1,.,, 1t s
Pr (x,-,y;) = f(xuya) + Ekf (X, y)+- 4 Eh f (xi, v:}

It is then clear that Euler’s method is a first-order Taylor method. Recall
that Euler’s method has a local truncation error O(#?) and a global trunca-
tion error O(). The kth-order Taylor method has a local truncation error
Ok and a global truncation error O(h9). Therefore, the higher the order of
the Taylor method, the more accurately it estimates the solution of the IVP.
However, this reduction in error demands the calculation of the derivatives
of flx,y), which is an obvious drawback.

Example 7.3: Second-Order Taylor Method

Solve the IVP in Examples 71 and 7.2 using the second-order Taylor
method with the same step size h=0.1 as before, and compare the
numerical results with those produced by Euler’s method.

SOLUTION
The preblem is

y+y=2x, y0)=1 0<xxs1
so that fix,y) = =y + 2x. Implicit differentiation with respect to x yieids

y=Fflxy)

Flyy==y +2 —(—y+20)+2=y-2x+2

By Equation 7.6, the second-order Taylor method is defined as
Y1 =¥ F gy, 1=0,1,2,..,n0 -1
where
pa(rioy) = fOr)+ 5 ()

Therefore

y|'+l = yi + h[f(xnyx) + ";_!hf,(xr'.ryi}il

Starting with y, =1, the solution estimate at the next location x, =0.1
is calculated as

h=w+ h[f(xu,yo) + %hf’(xo,yaﬂ = 0.9150

Noting the actual value at x,=0.1 is 0914512, this estimate has a
(global) percent relative error of —0.05%, which is a significant improve-
ment over the 1.59% offered by Euler’s method at the same location.
This upgrading of accuracy was expected because the second-order
Taylor method has a (global) truncation error O(h?) compared with O(h)
for Euler’s method. As mentioned before, this came at the expense of the
evaluation of the first derivative f'(x, y). The following MATLAB script
tabulates the solution estimates generated by the second-order Taylor
method:

disp(' b4 yEuler yTaylor2 e_Euler e Taylor2')
h=0.1; x=0:h:1; y0=1;

f=inline('=y+2*x','x','y'); fp=inline('y-2*x+2','x','y"');
yEuler =EulerODE(f,x,y0); yExact=inline('2*x+3*exp(-x)-2"');

yTaylor2 = 0*x; yTaylor2(l) =y0;

for n=1:length(x)-1,
yTaylor2 (n+l) =yTaylor2 (n}+h* (£ (x(n) ,yTaylor2(n))+ (1/2) *h
*fp(x(n) ,yTaylor2(n)));

end

for k=1:1ength(x);

x_coord=x(k);

yE=yEuler (k) ;

yEx = yExact (x (k) } ;

yT=yTaylor2 (k) ;

e_Euler = (yEx—yE) /yEx*100;

e Taylor2 = (yEx-yT) /yEx*100;
fprintf('%6.2f %11.6f %11.6f %6.2f
%6.2f\n',x_coord,yE,yT,e_Euler,e_Taylor2)

end

x yEuler yTaylor2 e_Euler e Taylor2

0.00 1.000000 1.000000 0.00 0.00

0.10 0.900000 0.915000 1.59 -0.05 Calculated by
hand earlier

0.20 0.8320000 0.857075 3.06 =0.10

0.30 0.787000 0.823653 4,31 —-0.15

0.40 0.768300 0.812406 5.26 -0.18

0.50 0.771470 0.821227 5.87 -0.20

0.60 0.794323 0.848211 6.16 -0.21

0.70 0.834891 0.891631 6.17 —=0.21

0.80 0.851402 0.949926 £.97 -0.20

0.50 0.962261 1.021683 5.63 -0.19

1.00 1.046035 1.105623 5.22 =0.18

7.3 Runge—Kutta Methods

In the last section, we learned that a kth-order Taylor method has a global
truncation error O(1%) but requires the calculation of derivatives of f{x,1).
Runge-Kutta metheds generate solution estimates with the accuracy of
Taylor methods without having to calculate these derivatives. Recall from
Equation 7.2 that all one-step methods to sclve the IVP

v=Ffry) wxe)=yo, a=x<x<x,=b
are expressed as
Vi = Wi + hso(x,-,y,-)

where ¢(x, 1) is an increment function and is essentially a suitable slope
over the interval [x, x;,] that is used for extrapolating y,,; from . The order
of the Runge—Kutta method is the number of poinis that are used in [x;, x,]
to determine this suitable slope. For example, second-order Runge-Kutta
methods use two points in each subinterval to find the representative slope,
and 50 on.

7.3.1 Second-Order Runge—Kutta Methods

For the second-order Runge-Kutta (RK2) methods, the increment function is
expressed as @(x, y) = a.k; + a,k, so that

Yisr = Yo + Blaks + 25ks) (7.7}

with

kl = f(x;'xyi}

(7.8)
kz = f(x,- + b]h,yj + Cllklh)

where a,, a,, b,, and ¢y, are constants, each set determined separately for each
specific RK2 method. These constants are evaluated by setting Equation 7.7
equal to the first three terms in a Taylor series, neglecting terms with 4° and
higher:

’ 1 T -
Yia =Y+ hy' + 5h2y L T O (79)

The term y’|x_ is simpiy ftx;, y), while

Chainrule f of dy
o= Pl T L T W
f y {;x[(i1} (}y (i) T
y'=f{x,) (9f 5)(
= i— + I f(xl'! yll)
Jx (i, i} ay xi 1)

Substituting for y’|,, and y”|, in Equation 79, we have

i |

df
Y4+ = Lo
(x5, 0) 2 ay

Yir = Yo + B y) + S0 = flxi,y)+ O (710)

xi.wid

Next, we will calculate y;,, using a different approach as follows. In
Equation 77, the term k, = fix; + b))t y; + o ki) is a function of two variables,
and can be expanded about (x,, ;) as

J
ks = f(x; + by +evkih) = fx, 00+ blh&f_

{xi il

J
vedh?| o) 711)

(%41

Substituting Equation 711 and k, = f(x,, ¥} in Equation 7.7, we find

Yo = g+ Raf oy + @l fayy+bh 2] vama®| roud
dx (i ik ay (i}
kr=Flximh C‘,jf 2 af 5
= i+ (@ + @) Hf(x,y)+ abir + ot = Flxi,y) + O(R7)
{1,,5&-) P
i (712)

The right-hand sides of Equations 710 and 712 represent the same quan-
tity, y,,,; hence, they must be equal. That yields

1 1
+a, =1 @b = 5 axtyy = 5 (713)

Since there are four unknowns and only three equations, a unique set of
solutions does not exist. But if a value is assigned to one of the constants, the
other three can be calculated. This is why there are several versions of RK2
methods, three of which are presented below. RK2 methods have local trun-
cation error O(h®) and global truncation error O(h?), as did the second-order
Taylor methods.

7.3.1.1 Improved Euler’s Method

Assuming a, = 1, the other three constants in Equation 7.13 are determined as
2,=0, b, = 1, and ¢y = 3. Inserting into Equations 7.7 and 7.8, the improved
Euler’s method is described by

Yin = Yi + hks (714)

where

k= f(xi,y:)
1 i (7.15)
kz = f(xf + “‘2h, Wi + Eklk)

7.3.1.2 Heun’s Method

Assuming a, = 1, the other three constants in Equation 713 are determined

as ¢ =1, by=1, and c¢;; =1. Inserting into Equations 77 and 7.8, Heun's

method is described by

1
Yin=Yi+ Ek(kl + k) (716)

where

ky = f(x.-,y.-)
(717)
k; = f(:r,— + h, i+ klh)
7.3.1.3 Ralston’s Method

Assuming a, = %, the other three constants in Equation 713 are determined
asa =1, b =3, and ¢;; = 3. Inserting into Equations 7.7 and 7.8, Ralston’s
method is described by

i
Yinn = Yi + h(ls +2k,) (718)

where

lkl = f(xi;yl')

(719)
ky = f[x,- + %h,y,- " %klh)

Note that each of these RK2 methods produces estimates with the accu-
racy of a second-order Taylor method without calculating the derivative of
fxy). Instead, each method requires two function evaluations per step.

7.3.1.4 Graphical Representation of Heun’s Method

Equations 7.16 and 7.17 can be combined as

LG yi) + f(xi + B, yi + kah) (7.20)

Yia =Y +)

Since k; = f(x;, y)), we have y; + k;h =y, + hf(x; y,). But this is the estimate y,,,
given by Euler’s method at x,,;, which we denote by y/** to avoid confusion
with ¥, in Equation 7.20. With this, and the fact that x; + k = x;,;, Equation 7.20

is rewritten as

fle,y) + J;(x;+1,yf+%“'1 (7.21)

y1'+1 = yi + h

The fraction multiplying h is the average of two quantities: the first
one is the slope at the left end x; of the interval; the second one is the
estimated slope at the right end x,,; of the interval. This is illustrated in
Figure 7.4.

In Figure 74a, the slope at the left end of the interval is shown as f(x, y,).
Figure 74b shows the estimated slope at the right end of the interval to be
f(xia, y25). The line whose slope is the average of these two slopes, Figure
74c, yields an estimate that is superior to y/4*". In Heun’s method, y,,, is
extrapolated from y; using this line.

The user-defined function HeunoDE uses Heun’s method to estimate the
solution of an IVP.

function y=HeunODE(f,x,y0)

given in the form y'=£(x,y)
condition yO0.

y=HeunODE (£, x,y0) where

y is the vector of solut
points.

G0 P of df of df of of o o° df of of

% Pre-allocate
=v0: h=%(2)=x(1);
n=1:length(x)-1,
kl=£(x(n),y(n));
k2 =f (x(n)+h,y (n)+h*kl) ;
y(n+1) =y (n)+h* (k1+k2) /2;
end

=
*
bl

I

Hh g
—

or

HeunODE uses Heun's method to solve a first-order ODE

subject to initial

f ig an inline function representing f(x,y),
x is a vector representing the mesh points,
y0 is a scalar representing the initial value of y,

ion estimates at the mesh

(a) (b)
e VET o 47 Yix _
Slope = f(x; ¥;) L Q- -
i
! : l : Slope = f (x;,1: 3725)
- L
I
True solution | : True solution| 5 |
trajectory lF_ 7 trajectory I
|]
L g I e
*i X * Xist
(c)
. ¥ j’?"a" y:'i-'“la
Slope = f(x, %) i+l / Average slope
¥ "N Slope=f(ruy 35D
| [
|r | A better estimate than y25
1
Truesolution] p 1
trajectory | ;
‘. ! _F
X; Firl
FIGURE 7.4

Graphical representation of Heun’s method.

Example 7.4: RK2 Methods
Consider the IVP

y-xy=2x, y(0)=1, 0sx<1, h=01

Compute the estimated value of y; = y(0.1) using each of the three RK2
methods discussed earlier.

SOLUTION

Noting that flx, y) =x%2 +y), the value of y, =y(0.1) estimated by each
RK2 method is calculated as follows:

Improved Euler’s Method

k= f(xo,0) = f(0,1)=0

= 1Yo + hk
kz:f[%“k%h;yu+%k1h]=f(0.05,1)=0.0075 e

=1+ 0.1(0.0075) = 1.0008
Heun's Method

ki = f(xo,y0) = f(0,1)=0

Y
ks = f(xo +h, yo + ki) = £(0.1,1) = 0.0300 SRR

=1+ 0.05(0.0300) = 1.0015
Ralston’s Method

ki = f(x0, y0)= £(0,1)=0

1
=1y +=h(k; + 2k
ky= f[xo +zh,yﬂ +%klh)= £(0.075,1)=0.0169 Y1=yo+ ghil+2k)

=1+ %(0.1)(0.0333}:1.0011

Continuing this process, the estimates given by the three methods at
the remaining points will be obtained and tabulated as in Table 7.1. The
exact solution is y = 8¢ 0. The global percent relative errors for all
three methods are also listed, where it is readily observed that all RK2
methods perform better than Euler, and that Ralston’s method is produc-
ing the most accurate estimates.

7.3.2 Third-Order Runge—Kutta Methods

For the third-order Runge-Kutta (RK3) methods, the increment function is
expressed as @(x;, v;) = a;k; + ak, + a;k,, so that

y;.ﬂ = y;' + h(ﬂ]k}_ 4 azkz + a3k3) (7.22)

TABLE 7.1

Summary of Calculations in Example 7.4

x Yeuter Yteun Yimp_Euater Yratston Culer CHeun Elmp_Euler ERalston
0.0 1.0000 1.0000 1.0000 1.0000 0.00 0.00 0.00 0.00
0.1 1.0000 1.0015 1.0008 1.0011 0.10 -0.05 0.02 -0.01

0.2 1.0030 1.0090 1.0075 1.0083 0.50 -0.10 0.05 -0.02
0.3 1.0150 1.0286 1.0263 1.0275 1.18 -0.15 0.08 —-0.03
0.4 1.0421 1.0667 1.0636 1.0651 212 -0.19 0.10 -0.04
0.5 1.0908 1.1302 1.1261 1.1281 3.27 -0.23 0.14 -0.04
0.6 1.1681 1.2271 1.2219 1.2245 4.56 -0.25 017 -0.04

0.7 1.2821 1.3671 1.3604 1.3637 5.96 -0.27 0.22 -0.03

0.8 1.4430 1.5626 1.5541 1.5583 7.40 -0.28 0.27 -0.00

0.9 1.6633 1.8301 1.8191 1.8246 8.87 -0.27 0.34 0.04
1.0 1.9600 21922 21777 2.1849 10.37 -0.25 0.42 0.09

with

k= f(xi, 1)
ka = f(x; + bih, y; + cukah)
ks = f(x,- + bgh, yi + Cz-lklh + ngkgh}

where ay, a,, 23, by, b,, ¢y, €5, and ¢y, are constants, each set determined sepa-
rately for each specific RK3 method. These constants are found by setting
Equation 7.22 equal to the first four terms in a Taylor series, neglecting terms
with k* and higher. Proceeding as with RK2 methods, we will end up with
six equations and eight unknowns. By assigning values to two of the con-
stants, the other six can be determined. Because of this, there are several RK3
methods, two of which are presented here. RK3 methods have local trun-
cation error O(h*) and global truncation error O(#%), as did the third-order
Taylor methods.

7.2.2.1 Classical RK3 Method
The classical RK3 method is described by

A %h(h + 4k, + k) (7.23)

where
k= f(xi, ¥:)
k —f(x-+lh -+1kh]
2= i 2 :yl 2 1
k3 = f(x,' o k,y; = k-ih + Zkzh)

7.3.2.2 Heun’s RKI Method
Heun’s RK3 method is described by

Wit = W; + %h(k-l + 3k3) (724)
where
k= f(xr-,y;-)
P R -+1kh]
2~ H 3 ,yj 3 1

2 2
ks = f[x;' + gk, i+ gkzhj

Each of these RK3 methods produces estimates with the accuracy of a
third-order Taylor methed without calculating the derivatives of f{x,y).
Instead, each method requires three function evaluations per step.

Example 7.5: RK3 Methods
Consider the IVF in Example 7.4:

v -xly=2x", y0)=1, 0<sx<1, h=01

Compute the estimated value of y, = 110.1) using the two RK3 methads
presented above,

SOLUTION
Noting that fix, ¥) = x (2 + i), the calculations are carried out as follows.

Classical RK3 Methad

k= f(xofb’o} = f(orl} =0
ko = flxg + ;h, Yo + %k,h) = f(0.05,1) = 0.0075
ky = flxg + b, yy — kol + 2kah) = £(0.1,1.0015) = 0.0300

1
5"1 = yu + ék(kl +4k2 +k3)

=1+ %(0‘1)(4 % 0.0075 + 0.0300) = 1.0010

TABLE 7.2

Summary of Calculations in Example 7.5

x YEuer Yrxs Yeteun_rics CEuler €RrKs €Heun RK3
0.0 1.0000 1.0000 1.0000 0.00 0.0000 0.0000
0.1 1.0000 1.0010 1.0010 0.10 —0.0000 0.0000
0.2 1.0030 1.0080 1.0080 0.50 —0.0001 0.0001
0.3 1.0150 1.0271 1.0271 1.18 —0.0004 0.0003
04 1.0421 1.0647 1.0647 212 -0.0010 0.0007
0.5 1.0908 1.1277 1.1276 3.27 —0.0018 0.0014
0.6 1.1681 1.2240 1.2239 4.56 —0.0030 0.0024
0.7 1.2821 1.3634 1.3633 5.96 —0.0044 0.0038
0.8 1.4430 1.5584 1.5582 7.40 -0.0059 0.0059
0.9 1.6633 1.8253 1.8250 8.87 —-0.0074 0.0086
1.0 1.9600 2.1870 2.1866 10.37 -0.0087 0.0124

Heun’s RK3 Method

k= f(xu;y’u} = f(Uzl) =0
ko = f(xo + %h;yn - %klh] = £(0.0333,1) = 0.0033

ks = f(xo + %h,y{, + %kzh} = £(0.0667,1.0002) = 0.0133
Vi=Yot %h(h + 3k3) = 1+ 0.05(0.0300) = 1.0010

A summary of all calculations is given in Table 7.2 where it is easily seen
that the global percent relative errors for the two RK3 methods are con-
siderably lower than all previous methods covered up to this point.

7.3.3 Fourth-Order Runge—Kutta Methods

For the fourth-order Runge-Kutta (RK4) methods, the increment function is
expressed as

t;')(x,-,y;) = alkl + ﬂ?_kz 5 i ﬂ3k3 + ﬂ,;k;
so that
Yiva = Vi + h(ﬂ1k1 + szz + ﬂ3k3 + ﬂ4k4) (7.25)

with

k= fxi i)

kz = f(x,- + b]k, yj + C“k]h)

kg = f(x,- + bzh,y; -+ Czlklh + szkzh)

k4 = f(xr- 4 b3h,yi‘ “+ Cglklh + ngkzh + C33k3h)

where g, b, and c; are constants, each set determined separately for each spe-
cific RK4 method. These constants are found by setting Equation 7.25 equal
to the first five terms in a Taylor series, neglecting terms with h° and higher.
Proceeding as before leads to 10 equations and 13 unknowns. By assigning
values to three of the constants, the other 10 can be determined. This is why
there are many RK4 methods, but only the classical RK4 is presented here.
RK4s have local truncation error O(h®) and global truncation error O(h*).

7.3.3.1 Classical RK4 Method
The classical RK4 method is described by

Vi =Yi + %k(k; + 2k2 + 2k3 -f: k;) (726)

where
ki = f(xfx }v‘:‘)

1 1
kz = f(x,' + Eh, Yi : o Eklh)
(727)
ks = Fl %+ Lh, g+ 2ioh
g = i 2 ;y: 7 2

kq = f(x;' + h, y,: + kg,h)

RK4 methods produce estimates with the accuracy of a fourth-order Taylor
method without calculating the derivatives of f{x,y). Instead, four function
evaluations per step are performed. The classical RK4 method is the most
commonly used technique for numerical solution of first-order IVPs, as it
offers the most acceptable balance of accuracy and computational effort.

The user-defined function RK4 uses the classical RK4 method to estimate
the solution of an IVP.

function y=RK4 (f,x,y0)
RK4 uses the classical RK4 method to solve a first-
order ODE given in the form y'=£(x,y) subject to

initial condition yo0.

y=REK4 (f,x,y0) where

o0 oP of odf P P oF opP

f is an inline function representing £(x,y),

% X is a vector representing the mesh points,

% y0 is a scalar representing the initial value of y,
%

% y is the vector of solution estimates at the mesh
% points.

y=0%x; % Pre-allocate

v(l) =v0; h=x(2)—=x(1);
for n=1:1length(x}-1,

ki=£f(x(n),y(n));
k2=£f(x(n)+h/2,y (n)+h*kl1/2) ;
k3=f(x(n)+h/2,y(n)+h*k2/2) ;
k4 = £ (x (n) +h, y (n) +h*k3) ;

y(n+l) =y (n)+h* (k1+2*k2+2*k3+k4) /6;

end

Example 7.6: RK4 methods
Consider the IVP in Examples 74 and 7.5:

V-y=22, y0)=1, 05i<l h=01
Compute the estimated value of i, = ¥(0.1) using the classical RK4 method.

SOLUTION
Noting that f(x, y) = ¥ (2 + y), the calculations are carried out as follows.

Classical RK4 Method

ki = f(xo,y0) = f(0,1) =0
ke = Flxo + %h,yg + %k,h} = £(0.05,1) = 0.0075

ks = f(xo + %h,yu + %kzh) = £(0.05,1.0004) = 0.0075
ks = f(xo +h,yo + ksh) = £(0.1,1.0008) = 0.0300
- %h(ki + 2y + 25 + ky) = 1.0010

A summary of all calculations is provided in Table 7.3 where it is easily
seen that the global percent relative error for the classical RK4 method is
significantly lower than all previous methods covered up to this point.
As expected, starting with Euler’s method, which is indeed a first-order
Runge-Kutta method, the accuracy improves with the order of the RK
method.

TABLE 7.3
Summary of Calculations in Example 7.6

RK4 RK3 RK2 RK1
X Yrka €RKa ERKs EHeun EEuler
0.0 1.000000 0.000000 0.0000 0.00 0.00
0.1 1.001000 0.000001 —0.0000 -0.05 0.10
0.2 1.008011 0.000002 ~0.0001 -0.10 0.50
0.3 1.027122 0.000003 -0.0004 -0.15 1.18
0.4 1.064688 0.000004 =0.0010 -0.19 212
0.5 1.127641 0.000005 -0.0018 -0.23 3.27
0.6 1.223966 0.000006 —0.0030 =0.25 4.56
0.7 1.363377 0.000007 -0.0044 -0.27 5.96
0.8 1.558286 0.000010 -0.0059 -0.28 7.40
0.9 1.825206 0.000016 -0.0074 -0.27 8.87
1.0 2.186837 0.000028 -0.0087 -0.25 10.37

7.3.3.2 Higher-Order Runge-Kutta Methods

The classical RK4 is the most commonly used numerical method for solving
first-order IVPs. If higher levels of accuracy are desired, the recommended
technique is Butcher’s fifth-order Runge-Kutta method (RK5), which is
defined as

Pl g—lo—h(?h + 32k, + 12k, + 32Ks + 7ke) (7.28)
where
ki = fx,p)
1 1
B i f[digb i T
b} f[x + 4 i + 1 1]

1 1 1
ks = f[x,- + “Ih,y,' + gklh + gkzh)
ky=f x-+1h v—lkh+kh]
4 = i 2 ryx 2 2 3

3 3 9

k5 — f[xl. + Zh,yl‘ + Eklh +Ek4h)
3 2 12 12 8

ke = f(x; +h,y; — ?klh + ?kzh ¥ *;;-kak - ?k&k + Ekshj

Therefore, Butcher’s RK5 method requires six function evaluations per
step.

350 Numerical Methods for Engineers and Scientists Using MATLAB®

7.3.4 Runge-Kutta-Fehlberg Method

One way to estimate the local truncation error for Runge-Kutta meth-
ods is to use two RK methods of different order and subtract the results.
For cases involving variable step size, the error estimate can be used to
decide when the step size needs to be adjusted. Naturally, a drawback of
this approach is the number of function evaluations required per step.
For example, we consider a common approach that uses a fourth-order
and a fifth-order RK. This requires a total of 10 (four for RK4 and six for
RK5) function evaluations per step. To get around the computational bur-
den, the Runge-Kutta-Fehlberg (RKF) method utilizes an RK5 method
that uses the function evaluations provided by its accompanying RK4
method.” This will reduce the number of function evaluations per step
from 10 to 6.

25 1408 2197 1 ksj (7.29)

i g R R g R 3
Yo =¥ [216 T 2565 T 4104 ¢ 5

together with a fifth-order method

16, 6656, 28561, 9 2
Yo =0 h[135 kit 10805 T 530 "m0 %kﬁj (%:20)

where
ks = 2f(x:, y:)
k =f(x-+lh -+lkhJ
2 i 4 s Wi 4 1
3 3
k3 :f[x,"fgh,y; k1h+ Zkzh]
ki = f[xf 2y 4 2y, P20, TOO hhj
13 2197 2197 2197
439 3680 845
kS = f[xi' + h;y: k‘]h Skzh ﬁkgh 4104 k4hj
1 3544 1859 11
ke = +=hy ki + 2kh — ksh + ksh — —ks
‘ f[x+2y 27 R T s ™ T e ™ T 4o)

* Refer to K.E. Atkinson, An Introduction to Numerical Analysis. 2nd edition, John Wiley,
New York, 1989,

Subtracting Equation 7.29 from Equation 7.30 yields the estimate of the
local truncation error:

1 128 2197
Throre: Bl kot
s h(seo 1T 475

1)
) 731
75040 T 505 55 "] el

In each step, Equation 7.29 gives the fourth-order accurate estimate,
Equation 730 gives the fifth-order accurate estimate, and Equation 7.31
returns the estimated local truncation error.

7.4 Multistep Methods

In single-step methods, the solution estimate y;,, at the point x,,, is obtained by
using information at a single previous point x;. Multistep methods are based
on the idea that a more accurate estimate for y,,, at x,,, can be attained by utiliz-
ing information on two or more previous points rather than x; only. Consider
Yy =fx, y) subject to initial condition y(xy) = y,. To use a multistep method to
find an estimate for y,, information on at least two previous points are needed.
However, the only available information is ,. This means that such methods
cannot self-start and the estimates at the first few points—depending on the
order of the method—must be found using either a single-step method such as
the classical RK4 or another multistep method that uses fewer previous points.

Multistep methods can be explicit or implicit. Explicit methods employ an
explicit formula to calculate the estimate. For example, if an explicit method
uses two previous points, the estimate y,,, at x,, is in the form

Yinn = P(Innxnyhxf-l;yf—ﬂ

This way, only known values appear on the right-hand side. In implicit
methods, the unknown estimate y,,, is involved on both sides of the equation

Yin = ?(x,-+1,y.-+1,x;,ynxs_uys_a)

and must be determined iteratively using the methods described in Chapter 3.

7.4.1 Adams—Bashforth Method

Adams-Bashforth method is an explicit multistep method to estimate the
solution y,,; of an IVP at x,,; by using the solution estimates at two or more
previous points. Several formulas can be derived depending on the number
of previous points used. The order of each formula is the number of previous

352 Numerical Methods for Engineers and Scientists Using MATLAB®

points it uses. For example, a second-order formula finds y,,, by utilizing the
estimates y; and y,, at the two prior points x; and x,,.

To derive the Adams—Bashforth formulas, we integrate y" = f(x, y) over an
arbitrary interval [x; x,,]

His1 X+l
J ydx= J.
X

f(x,y)dx

i

Because j:”l y'dx = y(x;,1) — y(x;), the above can be rewritten as

y(x) = y(x) + |)

or

Tisl

Yim=yi+ | f(x,y)dx (7.32)

xi

But since y(x) is unknown, f(x,y) cannot be integrated. To remedy this,
flx,y) is approximated by a polynomial that interpolates the data at (x;, ;)
and a few previous points. The number of the previous points that end up
being used depends on the order of the formula to be derived. For exam-
ple, for a second-order Adams-Bashforth formula, we use the polynomial
that interpolates the data at (x; ;) and one previous point, (x,, ¥;,), and
SO on.

7.4.1.1 Second-Order Adams—Bashforth Formula

The polynomial that interpolates the data at (x; y;) and (x,_;, ;) is linear and
in the form

pi(x) = f(xi,)+ [, y1) - f(xi—uyi—l)(x —x,)

Xi = Xiw
Letting f; = f(x, y) and f.; = f{x,;, y;,) for brevity, using p,(x) in Equation 7.32
Xisl

Yis1 = Yi + J- pi(x)dx

X

and assuming equally spaced data with spacing h, we arrive at
1
Vi =i + Eh(\?‘ff = fi1) (7.33)

As mentioned earlier, this formula cannot self-start because finding y,
requires ¥, and y_,, the latter not known. First, a single-step method such as
RK4 is used to find y, from the initial condition y,. The first application of
Equation 7.33 is when i =1 so that y, can be obtained using the information
on yyand y;,.

7.4.1.2 Third-Order Adams-Bashforth Formula

Approximating the integrand f{x,y) in Equation 7.32 by the second-degree
polynomial p,(x) (Section 5.5) that interpolates the data at (x,), (*,;, ¥;..), and
(X;2 Yio), and carrying out the integration yields

YVin=Yi + %h(%ﬁ- =16fi + 5fi-2) (7.34)

Since only y, is known, we first apply a method such as RK4 to find Y
and y,. The first application of Equation 7.34 is when i = 2 to obtain y; by
using the information on y,, y;, and y,.

7.4.1.3 Fourth-Order Adams—-Bashforth Formula

Approximating the integrand f(x,y) in Equation 7.32 by the third-degree
polynomial p,(x) (Section 5.5) that interpolates the data at (x;), (x4, Vi)
(*i2 Yia) and (x5 ¥;.5), and carrying out the integration yields

1
Wi = Yi + EH(SB)", - 59_](,'_1 + 37)‘;'_2 e 9ﬁ-3) (7.35)

Since only y, is known, we first apply a method such as RK4 to find y,,
Y2, and y5. The first application of Equation 7.35 is when i = 3 to obtain Y by
using the information on y,, ;, ¥,, and y,.

Adams-Bashforth formulas are primarily used in conjunction with the
Adams-Moulton formulas, which are also multistep but implicit, to be pre-
sented next. A weakness of higher-order Adams-Bashforth formulas is that
stability requirements place limitations on the step size that is necessary for
desired accuracy. The user-defined function AdamsBashforth4 uses the
fourth-order Adams-Bashforth formula to estimate the solution of an IVP.

function y=AdamsBashforthd (f,x,y0)

AdamsBashforth4 uses the fourth-order Adams-Bashforth
formula to solve a first-order ODE in the form y'=f(x,y)
subject to initial condition yO0.

y =AdamsBashforth4 (£f,x,y0) where
f is an inline function representing £ (x,y),
X is a vector representing the mesh points,

y0 is a scalar representing the initial wvalue of vy,

y is the wvector of solution estimates at the mesh
points.

P P OF odf P P o df P o of o oF

y(1:4) =RK4 (£,x(1:4),y0);

for n=4:1length(x)-1,
h=x(n+l)-x(n);
y{n+l) =y (n)+h* (55*f (x(n) ,y (n))=59*f (x(n-1) ,y(n-1))
+37*f (x(n-2) ,y(n-2))—9*f (x(n—-3) ,y(n-3))) /24;

end

7.4.2 Adams—Moulton Method

Adams-Moulton method is an implicit multistep method to estimate the
solution y,,, of an IVP at x,,, by using the solution estimates at two or more
previous points, as well as (x;,,, ¥,,;), where the solution is to be determined.
Several formulas can be derived depending on the number of points used.
The order of each formula is the total number of points it uses. For example,
a second-order formula finds y,,; by utilizing the estimates y; and y,,, at the
points x; and x;,,. This makes the formula implicit because the unknown y;,
will appear on both sides of the ensuing equation.

Derivation of Adams-Moulton formulas is similar to Adams-Bashforth
where the integrand in Equation 7.32 is approximated by a polynomial that
interpolates the data at prior points, as well as the point where the solution
is being determined.

7.4.2.1 Second-Order Adams—-Moulton Formula

The polynomial that interpolates the data at (x;, y;) and (x4, y;,,) is linear and
in the form

p1(x) — ﬁ +M(x—x,-)

Xiy1 — X;

where f;=f(x, y) and f,; = f(x,s, ;1) Replacing f(x,y) in Equation 7.32 with
p1(x) and carrying out the integration yields

Vi %h(f.- ¥ fan) 736)

This formula is implicit because f;,; = f(x;.1, ;1) contains y;,;, which is the
solution being sought. In this type of a situation, y,,; must be found itera-
tively using the techniques listed in Chapter 3. This formula has a global
truncation error O(/?).

7.4.2.2 Third-Order Adams-Moulton Formula

Approximating the integrand f(x,y) in Equation 7.32 by the second-degree
polynomial that interpolates the data at (x;;, 1), (x5 ¥), and (x,,, ¥;y), and
carrying out the integration yields

Vo = Y+ - h(s+ 8fi — fi) 737)

Since only y, is initially known, a method such as RK4 is first applied to
find y,. The first application of Equation 7.37 is when i = 1 to obtain y, implic-
itly. This formula has a global truncation error O(h3).

7.4.2.3 Fourth-Order Adams—Moulton Formula

Approximating the integrand f(x,y) in Equation 7.32 by the third-degree
polynomial that interpolates the data at (xyy, ¥ua), (6 ¥, (i ¥ia), and (x5,
Vi), and carrying out the integration we find

1
Yisr = Vi + ﬁh(gﬁ“ + lgfl e Sﬁ_]_ + ﬁ_z) (7.38)

Since only y, is initially known, a method such as RK4 is first applied to
find y, and y,. The first application of Equation 7.38 is when i =2 to obtain y,
implicitly. This formula has a global truncation error O(h%).

7.4.3 Predictor-Corrector Methods

Predictor—corrector methods are a class of techniques that employ a combi-
nation of an explicit formula and an implicit formula to solve an IVP. First,
the explicit formula is used to predict the value of y,,,. This predicted value
is denoted by ;1. The predicted J;,, is then used on the right-hand side of

an implicit formula to obtain a new, more accurate value for y,,; on the left-
hand side.

The simplest predictor—corrector method is Heun’s method, presented in
Section 7.3. Heun’s method first uses Euler’s method—an explicit formula—
as the predictor to obtain y3{". This predicted value is then used in Equation
7.21, which is the corrector

Euler)

=y, +h f(xffy!') + f{xf+1xy;‘+1
yi+ 2

Yiia

to find a more accurate value for y,,,. A modified version of this approach is
derived next so that a desired accuracy may be achieved through repeated
applications of the corrector formula.

7.4.3.1 Heun’s Predictor-Corrector Method

The objective is to find an estimate for y,,;. The method is implemented as
follows:

1. Find a first estimate for y;,;, denoted by y{}}, using Euler’s method,

which is an explicit formula

Predictor Yl = yi + B (i, v) (7.39)

2. Improve the predicted estimate by solving Equation 7.21 iteratively

Corrector yi

on oy
6D =y 4 b fxi,y:) + éf(xul,ym)’ k=1,2,3,... (740)

Therefore, y{}} is used in Equation 740 to obtain y{3, and so on.

3. The iterations in Step 2 are terminated when the following criterion
is satisfied:

(k+1) {k
Vi — yn%
(k+1)

Yin

Tolerance <€ (7.41)

where €is a prescribed tolerance.

4. If the tolerance criterion is met, increment i by 1 and set y; equal to

this last y{{” and go to Step 1.

7.4.3.2 Adams-Bashforth-Moulton Predictor-Corrector Method

Several predictor-corrector formulas can be created by combining one of the
(explicit) Adams-Bashforth formulas of a particular order as the predictor
with the (implicit) Adams-Moulton formula of the same order as the cor-
rector. The fourth-order formulas of these two methods, for example, can
be combined to create the fourth-order Adams-Bashforth-Moulton (ABM4)
predictor—corrector:

Predictor yi =, + 2—14h(55ﬁ ~59fiy + 37 = 9Fs), i=5,4,0m

(742)

(k+1) _

Corrector y{i" =y, + h(9 8 +19f ~5f 1+ fin), k=1,2,3,... (743

where f{ = f(xi,1,y%}). This method cannot self-start and is implemented
as follows: starting with the initial condition y,, apply a method such as RK4
to find estimates for y,, y,, and y, and calculate their respective f(x, y) values.
At this stage, the predlctor (Equation 742) is applied to find y’, which is then
used to calculate f{". The corrector (Equation 7.43) is next applied to obtain
y{. The estimate can be substituted back into Equation 7.43 for iterative cor-
rection. The process is repeated for the remaining values of the index i.

The user-defined function ABM4PredCorr uses the fourth-order ABM
predictor—corrector method to estimate the solution of an IVP. Note that the
function does not perform the iterative correction mentioned above.

function y=2ABM4PredCorr(f,x,y0)

ABM4PredCorr uses the fourth-order Adams-Bashforth-
Moulton predictor-corrector formula to solve y'=f(x,y)
subject to initial condition yo0.

y =ABM4PredCorr (f,x,y0) where
f is an inline function representing f (x,vy),
x is a vector representing the mesh points,

y0 is a scalar representing the initial value of vy,

y is the vector of solution estimates at the mesh
points.

P 0 P P P P PP I P P P IR P

py=zeros(4,1) ; % Pre-allocate

y(1l:4) =RK4 (£,x(1:4),y0); % Find the first 4 elements by RK4
h=x(2) -x(1);

% Start ABM4

for n=4:length(x)-1,
py (n+l) =y (n) + (h/24) * (55*f (x(n) ,y(n)) =59*Ff (x(n-1) ,
y(n-1))+37*£ (x(n-2) ,y (n—-2)) -9*£f (x (n—3) ,y(n-3))) ;
yintl) =y (n)+(h/24) * (9*f (x (n+l) ,py (n+1)) +19*f (x (n) ,

y(n))-5*f (x(n-1) ,y(n-1))+£ (x (n—2) ,y(n-2))) ;
end

Example 7.72 ABM4 Predictor-Corrector Method
Consider the IVP in Examples 7.4 through 7.6:

y-xy=2x", y0)=1 0<x<1, h=01

Compute the estimated value of y, = 1/(0.4) using the ABM4 predictor-
corrector method.

SOLUTION

Aix, y) =% (2 +y). The first element y, is given by the initial condition. The
next three are obtained by RK4 as

¥ = 1.001000, y, = 1.008011, y; = 1.027122

The respective f(x, y) values are calculated next:

fo = flxo,%0) = £(0,1)=0
fi = flx,y) = £(0.1,1.001000) = 0.030010
fo = f(x2,42) = £(0.2,1.008011) = 0.120320

fs = f(%s,5) = £(0.3,1.027122) = 0.272441

Prediction
Equation 742 yields

v =ys + Elih(Sst =59f, +37 1 - 9fo) = 1.064604

Calculate f{ = f(xq,y$") = £(0.4,1.064604) = 0.490337.

Correction
Equation 743 yields

1
¥ =ys + Ek@fin +19f; =52 + fi)

= 1.064696 Rel error = 0.0008%

This corrected value may be improved by substituting y{” and the cor-
responding f{* = f(xs,y{) into Equation 7.43

Y9 = yo + L HOFD +196 561+ i)

and inspecting the accuracy. In the present analysis, we perform only one

correction so that y{ is regarded as the value that will be used for y,. This
estimate is then used in Equation 742 with the index i incremented from 3
to 4. Continuing this process, we generate the numerical results in Table 7.4.

Another well-known predictor-corrector method is the fourth-order
Milne’s method:

Predictor y{l} = yi3 + %h(2ﬁ — fia+2fi2), i=3,4,..,n

Corrector yl(._ti—n = VYia + %h(fifl) + 4f| + ﬁ—l)r k= 1, 2, 3, an

where f& = f(xi1, ¥%)). As with the fourth-order ABM, this method cannot

self-start and needs a method such as RK4 for estimating y, i, and y; first.

TABLE 7.4
Summary of Calculations in Example 7.7

x YRKs i Predicted y; Corrected
0.0 1.000000
0.1 1.001000
0.2 1.008011
0.3 1.027122 Start ABM4
0.4 1.064604 1.064696
0.5 1.127517 1.127662
0.6 1.223795 1.224004
0.7 1.363143 1.363439
0.8 1.557958 1.558381
0.9 1.824733 1.825350

1.0 2186134 2.187052

