Lower-Order Spectral
Model

5.1 Introduction

This system was first developed by Lorenz (1960b). It is an elegant system
that provides an introduction to the concepts of spectral modeling, based
on the use of double Fourier series representations of the basic equations
in a doubly periodic domain. Here we examine the barotropic vorticity
equation. We start with the equation governing the conservation of vorticity
of a parcel for two-dimensional, homogeneous, incompressible, and inviscid
fluid flow on an f-plane given by

—sz/) =—J (%, V?), or g—tvzw = —k-VyxV (V). (5.1)

Since we are working on an f-plane, the 8 term does not appear in this
equation. v is the streamfunction and J is the Jacobian.
We state the periodicity property by the relation
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where k and [ are constants. We seek a solution to (5.1) in a closed hori-
zontal domain. For this, we expand v following Lorenz (1960b), that is,
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+ B sin(mkz + nly)]. (5.2)

This is the double Fourier representation of the function . The coeffi-
cients A, and B,,, are functions of time, where m and n are integers



representing east-west and north-south wavenumbers, respectively. Note
that Agg = 0. In addition, the lower limit ng of n is specified as

_ ) -0 if m>0
o 0 if m=0"

The series will now be truncated and we consider only those terms for
which m equals 0 and +1 and n equals -1, 0, and +1; in other words, we
include only one wave in both directions. Equation (5.2) for the stream-
function % then reduces to
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The corresponding relative vorticity is given by

V2ip = Ajg coskz + Agy cosly + Ayq cos(kz + 1y)
+ Aj,_1 cos(kz —ly) + Biosinkz
+ By sinly + By sin(kz + ly) + By,—1sin(kz —ly).  (5.4)

Substituting the Fourier expansion of ¢ and V?3 into (5.1) and taking
the Fourier transform of both sides of the resulting equation, we get the
prediction equations for the amplitude of the different wave components.
In all, we have eight equations providing time tendencies for each of the
eight amplitudes.

5.2 Maximum Simplification

After substituting for ¢ and V24 from (5.3) and (5.4) into (5.1) and equat-
ing the coefficients of the various Fourier functions on both sides of the
resulting equation, we get a set of differential equations for the coefficients
A107 A()l, Alla Al—l, Bl(], Bgl, Bll, and B1—1~ Following Lorenz (1960b),
we assume: (a) If Big, Bo1, Bi1, and B;_; vanish initially, then they will
remain zero for all time since their tendencies are always equal to zero, that
is,

dBy _ dBy _ dBy _dBi _

d ~ dt ~ dt = dt

We thus obta.in Bl() = B(]]_ = 311 = B1_1 = 0 (b) If A1_1 = —A11
initially, then A;_; will remain equal to —A;; for all time. Furthermore,
let Agl = A¢ Al() = F, and _All = G. With thiS, (53) reduces to

A F
P =— z cosly — ﬁcoskm—Zﬁﬁsinkmsinly. (5.5)



A, F, and G are functions of time. The term —(A/I?)cosly describes
the basic zonal current, that is, it has no z dependence. The term
—(F/k?) coskz — [2G/(k? + I?)]sin kz sinly describes the eddies. The cor-
responding relative vorticity is given by

V% = Acosly + F coskz + 2G sinkz sinly . (5.6)

Next we obtain an expression for
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Hence
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After simplifying, we obtain

J (¢, V) = (liz - %) AFklsinkz sinly

+ <k_12 - kz—_l*_p) 2F Gkl sin® kz cosly

+ (_llz + k2——1-+—_l_2> 2AGKlsin? lycoskz.  (5.12)

Differentiating (5.6) with respect to ¢, we get

21/) = d—A—cosly—i-C;—Fcoskm—}—Z(fi—G sinkzsinly. (5.13)
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From the barotropic vorticity equation (5.1) along with (5.12) and (5.13),
we get
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If we multiply (5.14) by cosly and integrate both sides over the entire
doubly periodic fundamental domain, then using the orthogonality proper-
ties of the Fourier functions we obtain
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Integrating, we obtain
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Similarly, if we multiply (5.14) by cos kz and sin kz sinly and integrate over
the domain, we get

dF 1 1
dG 1/1 1
i (r - k_> HLAF. (5.18)

Equations (5.16), (5.17), and (5.18) are a system of three coupled non-
linear first-order ordinary differential equations in the three unknowns A,
F, and G. If their initial values are known, then their future values can
be obtained using numerical integration. The above system has exact so-
lutions which can be expressed by elliptic functions (or circular functions)
in time.



