12.5 Semi-Lagrangian methods

Ideally, one should be able to integrate the advection equation by following the
fluid particles in a Lagrangian manner, so that the local rate of change and advection
terms do not have to be considered separately. In fact, taking a Lagrangian approach,
a graphical method has been developed to solve the barotropic vorticity equation using
a single time step of 24 h by following a set of fluid particles (Fjortoft 1952). However, in
general a set of fluid particles, which are initially distributed regularly, will soon become
greatly deformed and are thus rendered unsuitable for numerical integration (Welander
1955). To avoid this difficulty, the semi-Lagrangian method (occasionally referred to as
quasi-Lagrangian method) whereby a set of particles that arrive at a regular set of grid
points are traced backward over a single time step to their departure points was
proposed (Wiin-Nielsen 1959). The values of the dynamical quantities at the departure
points are obtained by interpolating known values at neighboring grid points. Note that
in a semi-Lagrangian method, the set of fluid particles in question changes at each time
step, which is different from the pure Lagrangian method. In addition, a combination of
these schemes, i.e. semi-Lagrangian semi-implicit scheme, has been proposed (Robert
1982; Staniforth and Coté 1991).

To examine the stability property of the semi-Lagrangian method, we consider the
one-dimensional nonlinear advection equation in the form of total derivative,
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where D/Dr = /0t +ud/dx and v is any variable under consideration. By integrating
over the trajectory of a fluid particle that arrives at a grid point /Ax, denoted as P in

Fig. 12.9, and at time (7 + 1)Az, we have
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where w7 is the value of  at the departure point of the particle at time 7Az. The value
w7 is obtained by polynomial interpolation from the neighboring grid points. The
stability and accuracy of the scheme depends on the interpolation method used. For
example, we may consider the linear interpolation from the surrounding grid points
(i—p)and (i—p—1) for v.
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where u is the advection velocity as represented in (12.5.1). The above equation may be
rearranged as
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Fig. 12.9 A schematic of the semi-Lagrangian method. A fluid particle that arrives at a grid
point iAx and at time (7 + 1)Az is denoted as P, which is located at x. and at time 7A7. The value
of the variable at this time and location (7) is obtained by polynomial interpolation from the
neighboring grid points, w7_,_; and y7_,. as expressed in (12.5.4) or (12.5.5).
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where
G&=a—p, o=ult/Ax. (12.5.6)

Therefore, from (12.5.2) we have
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According to (12.5.6) and Fig. 12.9, & is the fractional part, and p is the integral part
after advection of a non-dimensional distance wAt/Ax.



