Weatherclasses.com
  • Home
  • Contact information
  • Synoptic lab
    • Syllabus
    • Take-home exams
    • Homework
    • Tropical Cyclones
      • Tropical cyclone climatology and overview
      • Tropical cyclone life cycle and motion
      • Tropical cyclone structure
      • Hurricane forecasting learning material
      • Hurricane forecasting tools
      • Storm surge
      • TUTTs and LA/MS flood event of 2016
    • Ocean applications
      • Waves
      • Tides
      • Miscellaneous ocean products
    • Streamlines
    • Regression, MOS, and NBM
    • Forecasting baroclinic systems and other products
      • Analysis
      • Model guidance
      • Model Output Statistics and National Blend of Models
      • Useful forecast products
  • Synoptic class
    • Syllabus
    • Exam Information
    • Homework
    • Stability
      • The Basics
      • The SkewT and related diagnostic tools
      • POP, air mass thunderstorms, sea breeze thunderstorms
      • Severe Weather
    • Map analysis
      • Upper-level synoptic charts
      • Contouring
      • Surface analysis and fronts
      • Vertical structure
      • Jet Streaks
    • Dynamics
      • Review of dynamics
      • Dynamics applications
      • QG Theory and the Omega equation
      • Cyclogenesis and baroclinic instability
    • Modeling
    • Fog
    • Winter Weather
  • Intro Dynamics
    • Syllabus
    • Homework
    • Sample exam questions
    • Introduction (Chap. 1, HH)
    • Basic equations of meteorology (Chap. 2, HH)
    • Imbedded processes in equations of meteorology (Chap. 3, HH). Exam 2 material
    • Imbedded processes in equations of meteorology (Chap. 3, HH). Exam 3 material
    • Planetary boundary layer
    • Vorticity (Chap.4, HH)
    • Pertubation method and atmospheric waves (Chap 5, HH)
  • Numerical methods
    • Syllabus
    • Homework
    • Number Series
    • Interpolation
    • Basic matrix math
    • Filters And Fourier Analysis
    • Numerical derivatives
    • Numerical integration, random numbers, and Monte Carlo
    • Numerical solutions of differential equations and atmospheric modeling
    • Parameterization, data assimilation, and overview on WRF model
    • Final computer exercises
  • Dashboard
Atmospheric ascent and descent diagnostics
  • The QG philosophy
  • QG theory
  • The omega equation
  • Interpreting the omega equation
  • Omega equation with friction and diabatic processes
  • Simplified versions of the omega equation --- Trenberth's formulation and Q vectors . Examples courtesy of SFSU
  • Alternate notes --- Ted Funk's overview on QG theory applications
  • Alternate notes --- Iowa State's notes on QG theory and its diagnostics
  • Video lecture, part 1. Audio only.
  • Video lecture, part 2. Audio only.

QG diagnostic websites
  • Vertical motion QG diagnostics from the CMC model, courtesy Thomas Galarneau of CIMSS/NSSL
    1. Vertical motion associated with vertical change of vorticity advection from 900 to 500 mb
    2. Vertical motion associated with Laplacian of temperature advection at 700 mb
    3. Vertical motion combining two terms above from Omega equation
    4. Vertical motion from Trenberth thermal wind diagnostic at 700 mb
    5. Q-vectors at 700-mb
  • NWS Miami Q vector page
Copyright © 2020 Weather Classes
Proudly powered by Weebly
  • Home
  • Contact information
  • Synoptic lab
    • Syllabus
    • Take-home exams
    • Homework
    • Tropical Cyclones
      • Tropical cyclone climatology and overview
      • Tropical cyclone life cycle and motion
      • Tropical cyclone structure
      • Hurricane forecasting learning material
      • Hurricane forecasting tools
      • Storm surge
      • TUTTs and LA/MS flood event of 2016
    • Ocean applications
      • Waves
      • Tides
      • Miscellaneous ocean products
    • Streamlines
    • Regression, MOS, and NBM
    • Forecasting baroclinic systems and other products
      • Analysis
      • Model guidance
      • Model Output Statistics and National Blend of Models
      • Useful forecast products
  • Synoptic class
    • Syllabus
    • Exam Information
    • Homework
    • Stability
      • The Basics
      • The SkewT and related diagnostic tools
      • POP, air mass thunderstorms, sea breeze thunderstorms
      • Severe Weather
    • Map analysis
      • Upper-level synoptic charts
      • Contouring
      • Surface analysis and fronts
      • Vertical structure
      • Jet Streaks
    • Dynamics
      • Review of dynamics
      • Dynamics applications
      • QG Theory and the Omega equation
      • Cyclogenesis and baroclinic instability
    • Modeling
    • Fog
    • Winter Weather
  • Intro Dynamics
    • Syllabus
    • Homework
    • Sample exam questions
    • Introduction (Chap. 1, HH)
    • Basic equations of meteorology (Chap. 2, HH)
    • Imbedded processes in equations of meteorology (Chap. 3, HH). Exam 2 material
    • Imbedded processes in equations of meteorology (Chap. 3, HH). Exam 3 material
    • Planetary boundary layer
    • Vorticity (Chap.4, HH)
    • Pertubation method and atmospheric waves (Chap 5, HH)
  • Numerical methods
    • Syllabus
    • Homework
    • Number Series
    • Interpolation
    • Basic matrix math
    • Filters And Fourier Analysis
    • Numerical derivatives
    • Numerical integration, random numbers, and Monte Carlo
    • Numerical solutions of differential equations and atmospheric modeling
    • Parameterization, data assimilation, and overview on WRF model
    • Final computer exercises
  • Dashboard